新网创想网站建设,新征程启航
为企业提供网站建设、域名注册、服务器等服务
服务器
安装
首先需要安装好Java和Scala,然后下载Spark安装,确保PATH 和JAVA_HOME 已经设置,然后需要使用Scala的SBT 构建Spark如下:
$ sbt/sbt assembly
构建时间比较长。构建完成后,通过运行下面命令确证安装成功:
$ ./bin/spark-shell
scala> val textFile = sc.textFile(README.md) // 创建一个指向 README.md 引用 scala> textFile.count // 对这个文件内容行数进行计数 scala> textFile.first // 打印出第一行
Apache访问日志分析器
首先我们需要使用Scala编写一个对Apache访问日志的分析器,所幸已经有人编写完成,下载Apache logfile parser code。使用SBT进行编译打包:
sbt compile sbt test sbt package
打包名称假设为AlsApacheLogParser.jar。
然后在Linux命令行启动Spark:
// this works $ MASTER=local[4] SPARK_CLASSPATH=AlsApacheLogParser.jar ./bin/spark-shell
对于Spark 0.9,有些方式并不起效:
// does not work $ MASTER=local[4] ADD_JARS=AlsApacheLogParser.jar ./bin/spark-shell // does not work spark> :cp AlsApacheLogParser.jar
上传成功后,在Spark REPL创建AccessLogParser 实例:
import com.alvinalexander.accesslogparser._ val p = new AccessLogParser
现在就可以像之前读取readme.cmd一样读取apache访问日志accesslog.small:
scala> val log = sc.textFile(accesslog.small) 14/03/09 11:25:23 INFO MemoryStore: ensureFreeSpace(32856) called with curMem=0, maxMem=309225062 14/03/09 11:25:23 INFO MemoryStore: Block broadcast_0 stored as values to memory (estimated size 32.1 KB, free 294.9 MB) log: org.apache.spark.rdd.RDD[String] = MappedRDD[1] at textFile at:15 scala> log.count (a lot of output here) res0: Long = 100000
分析Apache日志
我们可以分析Apache日志中404有多少个,创建方法如下:
def getStatusCode(line: Option[AccessLogRecord]) = { line match { case Some(l) => l.httpStatusCode case None => 0 } }
其中Option[AccessLogRecord]是分析器的返回值。
然后在Spark命令行使用如下:
log.filter(line => getStatusCode(p.parseRecord(line)) == 404).count
这个统计将返回httpStatusCode是404的行数。
深入挖掘
下面如果我们想知道哪些URL是有问题的,比如URL中有一个空格等导致404错误,显然需要下面步骤:
过滤出所有 404 记录 从每个404记录得到request字段(分析器请求的URL字符串是否有空格等) 不要返回重复的记录创建下面方法:
// get the `request` field from an access log record def getRequest(rawAccessLogString: String): Option[String] = { val accessLogRecordOption = p.parseRecord(rawAccessLogString) accessLogRecordOption match { case Some(rec) => Some(rec.request) case None => None } }
将这些代码贴入Spark REPL,再运行如下代码:
log.filter(line => getStatusCode(p.parseRecord(line)) == 404).map(getRequest(_)).count val recs = log.filter(line => getStatusCode(p.parseRecord(line)) == 404).map(getRequest(_)) val distinctRecs = log.filter(line => getStatusCode(p.parseRecord(line)) == 404).map(getRequest(_)).distinct distinctRecs.foreach(println)
总结
对于访问日志简单分析当然是要grep比较好,但是更复杂的查询就需要Spark了。很难判断 Spark在单个系统上的性能。这是因为Spark是针对分布式系统大文件。
以上就是本文的全部内容,希望对大家的学习有所帮助,也希望大家多多支持创新互联。